Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.216
Filtrar
1.
Ecotoxicol Environ Saf ; 275: 116278, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564860

RESUMO

Due to the rise in temperature and sea level caused by climate change, the detection rate of aflatoxin B1 (AFB1) in food crops has increased dramatically, and the frequency and severity of aflatoxicosis in humans and animals are also increasing. AFB1 has strong hepatotoxicity, causing severe liver damage and even cancer. However, the mechanism of AFB1 hepatotoxicity remains unclear. By integrating network toxicology, molecular docking and in vivo experiments, this research was designed to explore the potential hepatotoxicity mechanisms of AFB1. Thirty-three intersection targets for AFB1-induced liver damage were identified using online databases. PI3K/AKT1, MAPK, FOXO1 signaling pathways, and apoptosis were significantly enriched. In addition, the proteins of ALB, AKT1, PIK3CG, MAPK8, HSP90AA1, PPARA, MAPK1, EGFR, FOXO1, and IGF1 exhibited good affinity with AFB1. In vivo experiments, significant pathological changes occurred in the liver of mice. AFB1 induction increased the expression levels of EGFR, ERK, and FOXO1, and decreased the expression levsls of PI3K and AKT1. Moreover, AFB1 treatment caused an increase in Caspase3 expression, and a decrease in Bcl2/Bax ratio. By combining network toxicology with in vivo experiments, this study confirms for the first time that AFB1 promotes the FOXO1 signaling pathway by inactivating PI3K/AKT1 and activating EGFR/ERK signaling pathways, hence aggravating hepatocyte apoptosis. This research provides new strategies for studying the toxicity of environmental pollutants and new possible targets for the development of hepatoprotective drugs.


Assuntos
Aflatoxina B1 , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Camundongos , Animais , Simulação de Acoplamento Molecular , Aflatoxina B1/toxicidade , Fígado/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptores ErbB/metabolismo
2.
Biochem Biophys Res Commun ; 710: 149880, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38581952

RESUMO

Drug-induced liver injury (DILI) occurs frequently and can be life-threatening. Increasing researches suggest that acetaminophen (APAP) overdose is a leading cause of drug-induced liver injury. Indole-3-carboxaldehyde (I3A) alleviates hepatic inflammation, fibrosis and atherosclerosis, suggesting a potential role in different disease development. However, the question of whether and how I3A protects against acetaminophen-induced liver injury remains unanswered. In this study, we demonstrated that I3A treatment effectively mitigates acetaminophen-induced liver injury. Serum alanine/aspartate aminotransferases (ALT/AST), liver malondialdehyde (MDA) activity, liver glutathione (GSH), and superoxide dismutase (SOD) levels confirmed the protective effect of I3A against APAP-induced liver injury. Liver histological examination provided further evidence of I3A-induced protection. Mechanistically, I3A reduced the expression of apoptosis-related factors and oxidative stress, alleviating disease symptoms. Finally, I3A treatment improved survival in mice receiving a lethal dose of APAP. In conclusion, our study demonstrates that I3A modulates hepatotoxicity and can be used as a potential therapeutic agent for DILI.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Indóis , Animais , Camundongos , Acetaminofen/efeitos adversos , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Estresse Oxidativo , Fígado/metabolismo , Apoptose , Glutationa/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Aspartato Aminotransferases , Alanina Transaminase
3.
Exp Cell Res ; 437(2): 114028, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582338

RESUMO

Acute liver injury (ALI) refers to the damage to the liver cells of patients due to drugs, food, and diseases. In this work, we used a network pharmacology approach to analyze the relevant targets and pathways of the active ingredients in Citri Reticulatae Pericarpium (CRP) for the treatment of ALI and conducted systematic validation through in vivo and in vitro experiments. The network pharmacologic results predicted that naringenin (NIN) was the main active component of CRP in the treatment of ALI. GO functional annotation and KEGG pathway enrichment showed that its mechanism may be related to the regulation of PPARA signaling pathway, PPARG signaling pathway, AKT1 signaling pathway, MAPK3 signaling pathway and other signaling pathways. The results of in vivo experiments showed that (NIN) could reduce the liver lesions, liver adipose lesions, hepatocyte injury and apoptosis in mice with APAP-induced ALI, and reduce the oxidative stress damage of mouse liver cells and the inflammation-related factors to regulate ALI. In vitro experiments showed that NIN could inhibit the proliferation, oxidative stress and inflammation of APAP-induced LO2 cells, promote APAP-induced apoptosis of LO2 cells, and regulate the expression of apoptotic genes in acute liver injury. Further studies showed that NIN inhibited APAP-induced ALI mainly by regulating the PPARA-dependent signaling pathway. In conclusion, this study provides a preliminary theoretical basis for the screening of active compounds in CRP for the prevention and treatment of ALI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Flavanonas , Fígado , Humanos , Animais , Camundongos , Fígado/metabolismo , Transdução de Sinais , Hepatócitos/metabolismo , Inflamação/metabolismo , Estresse Oxidativo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
4.
J Biochem Mol Toxicol ; 38(4): e23691, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38500399

RESUMO

Sustained liver injuries predominantly promote oxidative stress and inflammation that lead to the progression of chronic liver disease (CLD), including fibrosis, cirrhosis, and hepatocellular carcinoma. Boldine, an alkaloid isolated from Peumus boldus, has been shown to have antioxidant and anti-inflammatory effects. Currently, there is no definitive treatment option available for CLD. Therefore, we investigated the hepatoprotective effect of boldine against carbon tetrachloride (CCl4 )-induced chronic liver injury in rats. CCl4 (2 mL/kg., b.w., i.p.) was administered twice weekly for 5 weeks to induce chronic liver injury in rats. Separate groups of rats were given boldine (20 mg/kg b.w., and 40 mg/kg b.w.) and silymarin (100 mg/kg b.w.) orally, daily. Serum transaminases, lipid peroxidation, and antioxidant levels were measured, and nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (cox-2), interleukin-1 ß (IL-1ß), and α-smooth muscle actin (α-SMA) gene and protein expressions were evaluated. CCl4 administration increased liver marker enzymes of hepatotoxicity in serum and oxidative stress markers, inflammatory genes and α-smooth muscle actin expression in liver tissue. Boldine concurrent treatment suppressed CCl4 -induced elevation of transaminase levels in serum, restored enzymic and non-enzymic antioxidants, and downregulated NF-κB, TNF-α, Cox-2 and IL-1ß expressions, thereby suppressing hepatic inflammation. Boldine administration also repressed α-SMA expression. The results of this study demonstrate the antioxidant, anti-inflammatory, and antifibrotic properties of boldine, and it can be a potential therapeutic candidate in the treatment of CLD.


Assuntos
Aporfinas , Doença Hepática Induzida por Substâncias e Drogas , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Tetracloreto de Carbono/toxicidade , Actinas/metabolismo , Actinas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Ciclo-Oxigenase 2/metabolismo , Fígado/metabolismo , Transdução de Sinais , Estresse Oxidativo , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
5.
Ecotoxicol Environ Saf ; 274: 116192, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461574

RESUMO

To investigate the mechanisms of BDE-47 on hepatotoxicity in fish, this study examined the effects of dietary exposure to BDE-47 (40 and 4000 ng/g) on carp for 42 days. The results showed that BDE-47 significantly increased carp's condition factor and hepatosomatic index. Pathological results revealed unclear hepatic cord structure, hepatocytes swelling, cellular vacuolization, and inflammatory cell infiltration in the hepatopancreas of carp. Further investigation showed that ROS levels significantly increased on days 7, 14, and 42. Moreover, the activities of antioxidant enzymes SOD, GSH, CAT, and GST increased significantly from 1 to 7 days, and the transcription levels of antioxidant enzymes CAT, Cu-Zn SOD, Mn-SOD, GST, and GPX, and antioxidant pathway genes Keap1, Nrf2, and HO-1 changed significantly at multiple time-points during the 42 days. The results of apoptosis pathway genes showed that the mitochondrial pathway genes Bax, Casp3, and Casp9 were significantly upregulated and Bcl2 was significantly downregulated, while the transcription levels of FADD and PERK were significantly enhanced. These results indicate that BDE-47 induced oxidative damage in hepatopancreas, then it promoted cell apoptosis mainly through the mitochondrial pathway. This study provides a foundation for analyzing the mechanism of hepatotoxicity induced by BDE-47 on fish.


Assuntos
Carpas , Doença Hepática Induzida por Substâncias e Drogas , Éteres Difenil Halogenados , Animais , Antioxidantes/metabolismo , Carpas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Éter/metabolismo , Éter/farmacologia , Hepatopâncreas/metabolismo , Exposição Dietética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Apoptose , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
6.
Biochem Pharmacol ; 222: 116103, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428825

RESUMO

Liver is a major organ that metabolizes sulfur amino acids cysteine, which is the substrate for the synthesis of many essential cellular molecules including GSH, taurine, and coenzyme A. Bile acid-activated farnesoid x receptor (FXR) inhibits cysteine dioxygenase type 1 (CDO1), which mediates hepatic cysteine catabolism and taurine synthesis. To define the impact of bile acid inhibition of CDO1 on hepatic sulfur amino acid metabolism and antioxidant capacity, we developed hepatocyte-specific CDO1 knockout mice (Hep-CDO1 KO) and hepatocyte specific CDO1 transgenic mice (Hep-CDO1 Tg). Liver metabolomics revealed that genetic deletion of hepatic CDO1 reduced de novo taurine synthesis but had no impact on hepatic taurine abundance or bile acid conjugation. Consistent with reduced cysteine catabolism, Hep-CDO1 KO mice showed increased hepatic cysteine abundance but unaltered methionine cycle intermediates and coenzyme A synthesis. Upon acetaminophen overdose, Hep-CDO1 KO mice showed increased GSH synthesis capacity and alleviated liver injury. In contrast, hepatic CDO1 overexpression in Hep-CDO1 Tg mice stimulated hepatic cysteine to taurine conversion, resulting in reduced hepatic cysteine abundance. However, Hep-CDO1 Tg mice and WT showed similar susceptibility to acetaminophen-induced liver injury. Hep-CDO1 Tg mice showed similar hepatic taurine and coenzyme A compared to WT mice. In summary, these findings suggest that bile acid and FXR signaling inhibition of CDO1-mediated hepatic cysteine catabolism preferentially modulates hepatic GSH synthesis capacity and antioxidant defense, but has minimal effect on hepatic taurine and coenzyme A abundance. Repression of hepatic CDO1 may contribute to the hepatoprotective effects of FXR activation under certain pathologic conditions.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Camundongos , Animais , Cisteína/metabolismo , Acetaminofen/metabolismo , Cisteína Dioxigenase/genética , Cisteína Dioxigenase/metabolismo , Ácidos e Sais Biliares/metabolismo , Antioxidantes/farmacologia , Hepatócitos/metabolismo , Fígado/metabolismo , Glutationa/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Taurina/farmacologia , Taurina/metabolismo , Coenzima A/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Mol Med ; 30(1): 43, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539088

RESUMO

BACKGROUND: Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been implicated in multiple inflammatory and non-inflammatory diseases, including liver injury induced by acetaminophen (APAP) overdose. Multiple small molecule inhibitors of MIF have been described, including the clinically available anti-rheumatic drug T-614 (iguratimod); however, this drug's mode of inhibition has not been fully investigated. METHODS: We conducted in vitro testing including kinetic analysis and protein crystallography to elucidate the interactions between MIF and T-614. We also performed in vivo experiments testing the efficacy of T-614 in a murine model of acetaminophen toxicity. We analyzed survival in lethal APAP overdose with and without T-614 and using two different dosing schedules of T-614. We also examined MIF and MIF inhibition effects on hepatic hydrogen peroxide (H2O2) as a surrogate of oxidative stress in non-lethal APAP overdose. RESULTS: Kinetic analysis was consistent with a non-competitive type of inhibition and an inhibition constant (Ki) value of 16 µM. Crystallographic analysis revealed that T-614 binds outside of the tautomerase active site of the MIF trimer, with only the mesyl group of the molecule entering the active site pocket. T-614 improved survival in lethal APAP overdose when given prophylactically, but this protection was not observed when the drug was administered late (6 h after APAP). T-614 also decreased hepatic hydrogen peroxide concentrations during non-lethal APAP overdose in a MIF-dependent fashion. CONCLUSIONS: T-614 is an allosteric inhibitor of MIF that prevented death and decreased hepatic hydrogen peroxide concentrations when given prophylactically in a murine model of acetaminophen overdose. Further studies are needed to elucidate the mechanistic role of MIF in APAP toxicity.


Assuntos
Benzopiranos , Doença Hepática Induzida por Substâncias e Drogas , Cromonas , Fatores Inibidores da Migração de Macrófagos , Sulfonamidas , Camundongos , Animais , Acetaminofen/efeitos adversos , Peróxido de Hidrogênio/metabolismo , Modelos Animais de Doenças , Cinética , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Estresse Oxidativo , Fígado/metabolismo
8.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542239

RESUMO

Animal studies are typically utilized to understand the complex mechanisms associated with toxicant-induced hepatotoxicity. Among the alternative approaches to animal studies, in vitro pooled human hepatocytes have the potential to capture population variability. Here, we examined the effect of the hepatotoxicant thioacetamide on pooled human hepatocytes, divided into five lots, obtained from forty diverse donors. For 24 h, pooled human hepatocytes were exposed to vehicle, 1.33 mM (low dose), and 12 mM (high dose) thioacetamide, followed by RNA-seq analysis. We assessed gene expression variability using heat maps, correlation plots, and statistical variance. We used KEGG pathways and co-expression modules to identify underlying physiological processes/pathways. The co-expression module analysis showed that the majority of the lots exhibited activation for the bile duct proliferation module. Despite lot-to-lot variability, we identified a set of common differentially expressed genes across the lots with similarities in their response to amino acid, lipid, and carbohydrate metabolism. We also examined efflux transporters and found larger lot-to-lot variability in their expression patterns, indicating a potential for alteration in toxicant bioavailability within the cells, which could in turn affect the gene expression patterns between the lots. Overall, our analysis highlights the challenges in using pooled hepatocytes to understand mechanisms of toxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Tioacetamida , Animais , Humanos , Tioacetamida/toxicidade , Fígado/metabolismo , Hepatócitos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
9.
Food Chem Toxicol ; 187: 114624, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556155

RESUMO

Diclofenac, a widely used non-steroidal anti-inflammatory drug, can cause liver damage via its metabolic activation by hepatic CYP450s and UGT2B7. Fasting can affect drug-induced liver injury by modulating the hepatic metabolism, but its influence on diclofenac hepatotoxicity is unknown. Thus, we investigated diclofenac-induced liver damage after fasting in mice, and the cellular events were examined. Male ICR mice fasted for 16 h showed the elevation of CYP3A11, but the decreases of UGT2B7, glutathione (GSH), and GSH S-transferase-µ/-π levels in the livers. Diclofenac (200 mg/kg) injection into the mice after 16-h fasting caused more significant liver damage compared to that in the diclofenac-treated fed mice, as shown by the higher serum ALT and AST activities. Diclofenac-promoted hepatic oxidative stress (oxidized proteins, 4-hydroxynonenal, and malondialdehyde), endoplasmic reticulum (ER) stress (BiP, ATF6, and CHOP), and apoptosis (cleaved caspase-3 and cleaved PARP) were enhanced by fasting. Autophagic degradation was inhibited in the diclofenac-treated fasting mice compared to that of the corresponding fed mice. The results suggest that fasting can make the liver more susceptible to diclofenac toxicity by lowering GSH-mediated detoxification; increased oxidative/ER stresses and apoptosis and suppressed autophagic degradation may be the cellular mechanisms of the aggravated diclofenac hepatotoxicity under fasting conditions.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Masculino , Animais , Diclofenaco/toxicidade , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Camundongos Endogâmicos ICR , Fígado/metabolismo , Estresse do Retículo Endoplasmático , Apoptose , Glutationa/metabolismo , Estresse Oxidativo , Jejum , Autofagia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
10.
Clin Chem ; 70(4): 597-628, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38427953

RESUMO

BACKGROUND: Approximately 30 million people worldwide consume new psychoactive substances (NPS), creating a serious public health issue due to their toxicity and potency. Drug-induced liver injury is the leading cause of liver disease, responsible for 4% of global deaths each year. CONTENT: A systematic literature search revealed 64 case reports, in vitro and in vivo studies on NPS hepatotoxicity. Maximum elevated concentrations of aspartate aminotransferase (136 to 15 632 U/L), alanine transaminase (121.5 to 9162 U/L), total bilirubin (0.7 to 702 mg/dL; 0.04 to 39.03 mmol/L), direct (0.2-15.1 mg/dL; 0.01-0.84 mmol/L) and indirect (5.3 mg/dL; 0.29 mmol/L) bilirubin, alkaline phosphatase (79-260 U/L), and gamma-glutamyltransferase (260 U/L) were observed as biochemical markers of liver damage, with acute and fulminant liver failure the major toxic effects described in the NPS case reports. In vitro laboratory studies and subsequent in vivo NPS exposure studies on rats and mice provide data on potential mechanisms of toxicity. Oxidative stress, plasma membrane stability, and cellular energy changes led to apoptosis and cell death. Experimental studies of human liver microsome incubation with synthetic NPS, with and without specific cytochrome P450 inhibitors, highlighted specific enzyme inhibitions and potential drug-drug interactions leading to hepatotoxicity. SUMMARY: Mild to severe hepatotoxic effects following synthetic NPS exposure were described in case reports. In diagnosing the etiology of liver damage, synthetic NPS exposure should be considered as part of the differential diagnosis. Identification of NPS toxicity is important for educating patients on the dangers of NPS consumption and to suggest promising treatments for observed hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias , Humanos , Ratos , Camundongos , Animais , Fígado/metabolismo , Hepatopatias/diagnóstico , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fosfatase Alcalina , Alanina Transaminase , Bilirrubina
11.
Environ Int ; 185: 108556, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461777

RESUMO

Lithium Bis(trifluoromethanesulfonyl)imide (LiTFSI ie. HQ-115), a polymer electrolyte used in energy applications, has been detected in the environment, yet its health risks and environmental epigenetic effects remain unknown. This study aims to unravel the potential health risks associated with LiTFSI, investigate the role of DNA methylation-induced toxic mechanisms in its effects, and compare its hepatotoxic impact with the well-studied Perfluorooctanoic Acid (PFOA). Using a murine model, six-week-old male CD1 mice were exposed to 10 and 20 mg/kg/day of each chemical for 14 days as 14-day exposure and 1 and 5 mg/kg/day for 30 days as 30-day exposure. Results indicate that PFOA exposure induced significant hepatotoxicity, characterized by liver enlargement, and elevated serum biomarkers. In contrast, LiTFSI exposure showed lower hepatotoxicity, accompanied by mild liver injuries. Despite higher bioaccumulation of PFOA in serum, LiTFSI exhibited a similar range of liver concentrations compared to PFOA. Reduced Representative Bisulfite Sequencing (RRBS) analysis revealed distinct DNA methylation patterns between 14-day and 30-day exposure for the two compounds. Both LiTFSI and PFOA implicated liver inflammatory pathways and lipid metabolism. Transcriptional results showed that differentially methylated regions in both exposures are enriched with cancer/disease-related motifs. Furthermore, Peroxisome proliferator-activated receptor alpha (PPARα), a regulator of lipid metabolism, was upregulated in both exposures, with downstream genes indicating potential oxidative damages. Overall, LiTFSI exhibits distinct hepatotoxicity profiles, emphasizing the need for comprehensive assessment of emerging PFAS compounds.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fluorocarbonos , Hidrocarbonetos Fluorados , Imidas , Masculino , Animais , Camundongos , Lítio/metabolismo , Lítio/farmacologia , Fluorocarbonos/toxicidade , Caprilatos/toxicidade , Epigênese Genética , Fígado , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
12.
Int Immunopharmacol ; 130: 111762, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38428146

RESUMO

Drug-induced liver injury (DILI) is a common and severe adverse drug reaction that can result in acute liver failure. Previously, we have shown that Lycium barbarum L. (wolfberry) ameliorated liver damage in acetaminophen (APAP)-induced DILI. Nevertheless, the mechanism needs further clarification. Herein, we utilized APAP-induced DILI mice to investigate how wolfberry impacts the gut-liver axis to mitigate liver damage. We showed that the abundance of Akkermansia muciniphila (A. muciniphila) was decreased, and intestinal microbiota was disrupted, while the expression levels of YAP1 and FXR-mediated CYP7A1 were reduced in the liver of DILI mice. Furthermore, wolfberry increased the abundance of A. muciniphila and the number of goblet cells in the intestines, while decreasing AST, ALT, and total bile acids (TBA) levels in the serum. Interestingly, A. muciniphila promoted YAP1 and FXR expression in hepatocytes, leading to the inhibition of CYP7A1 expression and a decrease in TBA content. Notably, wolfberry did not exert the beneficial effects mentioned above after the removal of intestinal bacteria by antibiotics (ATB)-containing water. Additionally, Yap1 knockout downregulated FXR expression and enhanced CYP7A1 expression in the liver of hepatocyte-specific Yap1 knockout mice. Therefore, wolfberry stimulated YAP1/FXR activation and reduced CYP7A1 expression by promoting the balance of intestinal microbiota, thereby suppressing the overproduction of bile acids.


Assuntos
Acetaminofen , Akkermansia , Ácidos e Sais Biliares , Doença Hepática Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Lycium , Proteínas de Ligação a RNA , Proteínas de Sinalização YAP , Animais , Camundongos , Acetaminofen/efeitos adversos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/microbiologia , Fígado , Lycium/química , Proteínas de Sinalização YAP/metabolismo , Proteínas de Ligação a RNA/metabolismo , Camundongos Knockout
13.
Sci Total Environ ; 922: 171234, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428612

RESUMO

As a ubiquitous pollutant in the environment, hexafluoropropylene oxide trimer acid (HFPO-TA) has been proven to have strong hepatotoxicity. However, the underlying mechanism is still unclear. Consequently, in vivo and in vitro models of HFPO-TA exposure were established to investigate the detrimental effects of HFPO-TA on the liver. In vivo, we discovered that HFPO-TA enhanced endoplasmic reticulum (ER)-mitochondrial association, caused mitochondrial oxidative damage, activated ER stress, and induced apoptosis in mouse livers. In vitro experiments confirmed that IP3R overexpression on ER structure increased mitochondrial calcium levels, which led to mitochondrial damage and mitochondria-dependent apoptosis in HepG2 cells exposed to HFPO-TA. Subsequently, damaged mitochondria released a large amount of mitochondrial ROS, which activated ER stress and ER stress-dependent apoptosis. In conclusion, this study demonstrates that HFPO-TA can induce apoptosis by regulating the crosstalk between ER and mitochondria, ultimately leading to liver damage. These findings reveal the significant hepatotoxicity of HFPO-TA and its potential mechanisms.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fluorocarbonos , Mitocôndrias , Propionatos , Animais , Camundongos , Apoptose , Retículo Endoplasmático/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
14.
Eur J Pharm Biopharm ; 198: 114272, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537909

RESUMO

Three-dimensional liver bioprinting is an emerging technology in the field of regenerative medicine that aids in the creation of functional tissue constructs that can be used as transplantable organ substitutes. During transplantation, the bioprinted donor liver must be protected from the oxidative stress environment created by various factors during the transplantation procedure, as well as from drug-induced damage from medications taken as part of the post-surgery medication regimen following the procedure. In this study, Silymarin, a flavonoid with the hepatoprotective properties were introduced into the GelMA bioink formulation to protect the bioprinted liver against hepatotoxicity. The concentration of silymarin to be added in GelMA was optimised, bioink properties were evaluated, and HepG2 cells were used to bioprint liver tissue. Carbon tetrachloride (CCl4) was used to induce hepatotoxicity in bioprinted liver, and the effect of this chemical on the metabolic activities of HepG2 cells was studied. The results showed that Silymarin helps with albumin synthesis and shields liver tissue from the damaging effects of CCl4. According to gene expression analysis, CCl4 treatment increased TNF-α and the antioxidant enzyme SOD expression in HepG2 cells while the presence of silymarin protected the bioprinted construct from CCl4-induced damage. Thus, the outcomes demonstrate that the addition of silymarin in GelMA formulation protects liver function in toxic environments.


Assuntos
Acrilamidas , Doença Hepática Induzida por Substâncias e Drogas , Transplante de Fígado , Silimarina , Humanos , Silimarina/metabolismo , Silimarina/farmacologia , Tetracloreto de Carbono , Gelatina , Extratos Vegetais/química , Doadores Vivos , Fígado , Antioxidantes/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
15.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338766

RESUMO

Stachydrine, a prominent bioactive alkaloid derived from Leonurus heterophyllus, is a significant herb in traditional medicine. It has been noted for its anti-inflammatory and antioxidant characteristics. Consequently, we conducted a study of its hepatoprotective effect and the fundamental mechanisms involved in acetaminophen (APAP)-induced liver injury, utilizing a mouse model. Mice were intraperitoneally administered a hepatotoxic dose of APAP (300 mg/kg). Thirty minutes after APAP administration, mice were treated with different concentrations of stachydrine (0, 2.5, 5, and 10 mg/kg). Animals were sacrificed 16 h after APAP injection for serum and liver tissue assays. APAP overdose significantly elevated the serum alanine transferase levels, hepatic pro-inflammatory cytokines, malondialdehyde activity, phospho-extracellular signal-regulated kinase (ERK), phospho-protein kinase B (AKT), and macrophage-stimulating protein expression. Stachydrine treatment significantly decreased these parameters in mice with APAP-induced liver damage. Our results suggest that stachydrine may be a promising beneficial target in the prevention of APAP-induced liver damage through attenuation of the inflammatory response, inhibition of the ERK and AKT pathways, and expression of macrophage-stimulating proteins.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Prolina , Animais , Camundongos , Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Estresse Oxidativo , Prolina/análogos & derivados , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator Estimulador de Colônias de Macrófagos/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/metabolismo
16.
Redox Biol ; 71: 103088, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401290

RESUMO

Acetaminophen (APAP)-induced liver injury is one of the most prevalent causes of acute liver failure (ALF). We assessed the role of the bone morphogenetic protein (BMP) type I receptors ALK2 and ALK3 in APAP-induced hepatotoxicity. The molecular mechanisms that regulate the balance between cell death and survival and the response to oxidative stress induced by APAP was assessed in cultured human hepatocyte-derived (Huh7) cells treated with pharmacological inhibitors of ALK receptors and with modulated expression of ALK2 or ALK3 by lentiviral infection, and in a mouse model of APAP-induced hepatotoxicity. Inhibition of ALK3 signalling with the pharmacological inhibitor DMH2, or by silencing of ALK3, showed a decreased cell death both by necrosis and apoptosis after APAP treatment. Also, upon APAP challenge, ROS generation was ameliorated and, thus, ROS-mediated JNK and P38 MAPK phosphorylation was reduced in ALK3-inhibited cells compared to control cells. These results were also observed in an experimental model of APAP-induced ALF in which post-treatment with DMH2 after APAP administration significantly reduced liver tissue damage, apoptosis and oxidative stress. This study shows the protective effect of ALK3 receptor inhibition against APAP-induced hepatotoxicity. Furthermore, findings obtained from the animal model suggest that BMP signalling might be a new pharmacological target for the treatment of ALF.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Morfolinas , Camundongos , Animais , Humanos , Acetaminofen/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Estresse Oxidativo , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Camundongos Endogâmicos C57BL
17.
Lab Chip ; 24(6): 1715-1726, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38328873

RESUMO

The liver and kidney are the major detoxifying organs in the human body and play an important role in pharmacokinetics. Drug-induced hepatotoxicity and nephrotoxicity can cause irreversible damage to the liver and kidney and are a major cause of drug failure in later stages. Both animal models and conventional cell culture have a number of limitations, such as animal ethics and gene mismatching and there is an urgent need to develop a new drug toxicity evaluation approach. In this paper, a 3D liver-kidney on a chip with a biomimicking circulating system (LKOCBCS) was constructed to obtain kidney and liver models in vitro for drug safety evaluation. LKOCBCS, which has a parallel circulating system mimicking biological circulation, consists of 3D biomimetic tissue of liver lobules similar to that of the human liver constructed by 3D bioprinting and renal proximal tubule barriers fabricated by ultrafast laser assisted etching. The proposed LKOCBCS facilitates the communication between the liver and the kidney, including the exchange of nutrients, compounds, and metabolites. The results revealed that the glucose concentration and cell metabolism stabilized after 7 days. A dynamically repeated low-dose administration of cyclosporine A (CsA) was fed to the system, and hepatotoxicity and nephrotoxicity were observed on day 3 according to the changes in toxicity markers. The high levels of drug induced biomarkers expressed in LKOCBCS indicate that this system is more sensitive than the monoculture liver chip and it is highly potential in replacing animal models for effective drug toxicity screening.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Humanos , Rim , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Dispositivos Lab-On-A-Chip
18.
Arch Toxicol ; 98(4): 1095-1110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369618

RESUMO

Chlorzoxazone (CZX), a benzoxazolone derivative, has been approved for the treatment of musculoskeletal disorders to relieve localized muscle spasm. However, its idiosyncratic toxicity reported in patients brought attention, particularly for hepatotoxicity. The present study for the first time aimed at the relationship between CZX-induced hepatotoxicity and identification of oxirane intermediate resulting from metabolic activation of CZX. Two N-acetylcysteine (NAC) conjugates (namely M1 and M2) and two glutathione (GSH) conjugates (namely M3 and M4) were detected in rat & human microsomal incubations with CZX (200 µM) fortified with NAC or GSH, respectively. The formation of M1-M4 was NADPH-dependent and these metabolites were also observed in urine or bile of SD rats given CZX intragastrically at 10 mg/kg or 25 mg/kg. NAC was found to attach at C-6' of the benzo group of M1 by sufficient NMR data. CYPs3A4 and 3A5 dominated the metabolic activation of CZX. The two GSH conjugates were also observed in cultured rat primary hepatocytes after exposure to CZX. Inhibition of CYP3A attenuated the susceptibility of hepatocytes to the cytotoxicity of CZX (10-400 µM). The in vitro and in vivo studies provided solid evidence for the formation of oxirane intermediate of CZX. This would facilitate the understanding of the underlying mechanisms of toxic action of CZX.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Clorzoxazona , Humanos , Ratos , Animais , Citocromo P-450 CYP3A/metabolismo , Ativação Metabólica , Ratos Sprague-Dawley , Microssomos Hepáticos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Compostos de Epóxi/metabolismo , Glutationa/metabolismo
19.
Tissue Cell ; 87: 102321, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350206

RESUMO

The prevalent use of abamectin (ABM) has latterly raised safety attention as it has different toxicities to non-target living organisms. Citrus fruits are widely renowned for their nutritional and health-promoting qualities, and their peels are full of phenolic constituents. The purpose of the current study was to evaluate the modulatory effectiveness of Citrus reticulata peel extract (CPE) against abamectin-induced hepatotoxicity and oxidative injury. Rats were distributed into 4 groups as follows: control, CPE (400 mg/kg bw orally for 14 days), ABM (2 mg/kg bw for 5 days), and CPE + ABM at the doses mentioned above. Results revealed that GC-MS analysis of CPE has 19 identified components with significant total phenolic and flavonoid contents. Treatment with ABM in rats displayed significant variations in enzymatic and non-enzymatic antioxidants, oxidative stress markers (MDA, H2O2, PCC), liver and kidney function biomarkers, hematological parameters, lipids, and protein profile as well as histopathological abnormalities, inflammation and apoptosis (TNF-α, Caspase-3, NF-κB, and Bcl-2 genes) in rats' liver. Supplementation of CPE solo dramatically improved the antioxidant state and reduced oxidative stress. C. reticulata peel extract pretreatment alleviated ABM toxicity by modulating most of the tested parameters compared to the ABM group. Conclusively, CPE had potent antioxidant activity and could be used in the modulation of ABM hepatotoxicity presumably due to its antioxidant, anti-inflammatory, and gene-regulating capabilities.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Citrus , Ivermectina/análogos & derivados , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Fígado/patologia , Citrus/metabolismo , Extratos Vegetais/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
20.
Life Sci ; 340: 122480, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301876

RESUMO

AIM: The liver plays a crucial role in biotransformation but it is susceptible to chemical-induced damage, known as hepatotoxicity. Traditional therapies for protecting the liver face significant challenges, including poor bioavailability, off-target effects, adverse reactions, drug breakdown, and inadequate uptake. These issues emphasize the need for precise, targeted therapeutic approaches against hepatotoxicity. MATERIALS AND METHODS: The objective of our research was to develop a customized, biocompatible, and biodegradable nanodrug delivery system for hepatoprotection. We chose collagen hydrolyzed protein, or gelatin, as the base material and utilized solvent evaporation and nanoprecipitation methods to create nanoparticles with size ranging from 130 to 155 nm. The resulting nanoparticles exhibited a spherical and smooth surface, as confirmed by scanning and transmission electron microscopy. KEY FINDINGS: Bioactive aescin (AES), into these gelatin nanoparticles (AES-loaded gel NPs), we tested these nanoparticles using a hepatotoxicity model. The results were indicating a significant reduction in the levels of key biomolecules, including NF-κB, iNOS, BAX, and COX-2 and decreased serum levels of enzymes ALT and AST. This reduction correlated with a notable alleviation in the severity of hepatotoxicity. Furthermore, the treatment with AES-loaded gel NPs resulted in the downregulation of several inflammatory and liver-specific biomarkers, including nitrite, MPO, TNF-α, and IL-6. SIGNIFICANCE: In summary, our study demonstrates that the AES-loaded gel NPs were markedly more effective in mitigating experimental hepatotoxicity when compared to the free aescin. The nanoparticles exhibited a propensity for suppressing liver damage, showcasing the potential of this targeted therapeutic approach for safeguarding the liver from harmful chemical insults.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Nanopartículas , Ratos , Animais , Ratos Wistar , Escina/metabolismo , Gelatina/farmacologia , Tetracloreto de Carbono/toxicidade , Fígado/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...